Tabla A.3-1 SISTEMA ESTRUCTURAL DE MUROS DE CARGA (Nota 1)

A. SISTEMA DE MURC	A. SISTEMA DE MUROS DE CARGA		zonas de amenaza sismica						
		de	alta		intermedia		ba	ja	
Sistema de resistencia sísmica (fuerzas horizontales)	Sistema de resistencia para cargas verticales	R₀ (Nota 2)	uso permit	aitura max	uso permit	altura max	uso permit	altura max	
1. Paneles de cortante de madera	muros ligeros de madera laminada	5.0	SI	6 m	Şi	9 m	SI	12 m	
2. Muros estructurales			<u> </u>						
muros de concreto con capacidad especial de disipación de energía (DES)	el mismo	7.0	SI	72 m	Si	sın limite	Si	sin Ilmite	
b. muros de concreto con capacidad moderada de disipación de energía (DMO)	el mismo	4.5	no se j	permite	si	72 m	Si	sın limite	
c. muros de concreto con capacidad mínima de disipación de energia (DMN	el mismo	2.6	no se i	permite	no se	permite	Si	45 m	
d. muros de mamposteria reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	el mismo	4.5	SI	45 m	SI	60 m	SI	sin limite	
muros de mampostería reforzada de bloque de perforación vertical (DMO)	el mismo	3.5	SI	30 m	ŞI	40 m	SI	sin limite	
f. muros de mampostería parcialmente reforzada de bloque de perforacion vertical (<i>DMI</i>)	eł mismo	2.5	Grupo I	2 pisos	Si	12 m	\$1	18 m	
g. muros de mampostería confinada (DMO - capacidad moderada de disipación de energía)	el mismo	1.5	Grupo I y II	15 m	Grupo I y II	18 m	Grupo I y II	21 m	
h. muros de mamposteria de cavidad reforzada (DES - capacidad especial de disipación de energia)	el mismo	4.0	\$1	45 m	SI	60 m	5i	sin limite	
i. muros de mampostería no reforzada (<i>DMI</i> - no tiene capacidad de disipación de energia)	el mismo	1.0	no se	permite	no se permite		Grupo I (Note 3)	2 pisos	
3. Pórticos con diagonales (las diago	onales lievan fuerza vertical)								
a. pórticos de acero estructural con diagonales concéntricas (DES)	el mismo	5.0	SI	24 m	S)	30 m	Si	\$in limite	
b pórticos con diagonales de concreto con capacidad moderada de disipación de energía (DMO)	el mismo	3.5	по ѕе ј	permite	SI	30 m	SI	30 m	
c. pórticos de madera con diagonales	el mismo	20	SI	12 m	SI	15 m	Si	18 m	

- 1 El sistema de muros de carga es un sistema estructural que no dispone de un pórtico esencialmente completo, en el cual las cargas verticales son resistidas por los muros de carga y las fuerzas honzontales son resistidas por muros estructurales o pórticos con diagonales.
- 2 Para edificaciones clasificadas como irregulares el valor de R_{ii} debe multiplicarse por φ, y por φ, para obtener R = φ, φ, R_{ii} (Véase A.3.3 3)
- 3 La mampostería no reforzada solo se permite en las regiones de las zonas de amenaza sísmica baja donde A_a sea menor o igual a 0 05 cuando se trata de edificaciones del grupo de uso I, de uno y dos pisos.
- 4 En sistemas prefabricados debe emplearse $R_0 = 1.5$. Vease A 3.1.7.

Tabla A.3-2 SISTEMA ESTRUCTURAL COMBINADO (Nota 1)

B. SISTEMA COMBINADO		Valor		zon	as de amenaza sismica			
		de	a	lta	interr	nedla	baja	
Sistema de resistencia sísmica	Sistema de resistencia	R₀	uso	altura	USO	aitura	uso	altura
(fuerzas horizontales)	para cargas verticales	(Nota 2)	permit	max	permit	max	permit	max
1. Pórticos de acero con diagonales	excéntricas							
a. Pórticos de acero con diagonales	porticos de acero estructural	7.0	SI	45 m	şi	60 m	SI	รเก
excentricas	resistentes a momentos con			l	1		!	limite
	capacidad minima de			ĺ	ł			
 	disipación de energía (DMI)				<u> </u>	15	<u> </u>	
b Pórticos de acero con diagonales	porticos de acero estructural	6.0	ŞI	30 m	Si	45 m	si i	SID
excéntricas	no resistentes a momentos		Ĺ <u>, </u>	<u> </u>	<u> </u>	<u></u>	L	limite
2. Muros estructurales								
a muros de concreto con capacidad	porticos de concreto con	7.0	SI	72 m	ŞI	sın limite	SI	sin :
especial de disipación de energía	capacidad especial de			ļ	[irmite		límite
(DES)	disipación de energia (DES)					72 m		
b. muros de concreto con capacidad	porticos de concreto con	5.0	nose	permite	SI	(20)	51	sın fimite
moderada de disipación de energía	capacidad moderada de					i		mine
(DMO)	disipación de energía (DMO)	3.5	22.00.	no conside	si	18 m	SI	27 m
c. muros de concreto con capacidad	porticos losa-columna (Nota	3.5	110 50 1	permite	51	19111	31	27 161
moderada de disipacion de energía	3) con capacidad moderada de disipación de energía						1	
(DMO)	(DMO)				ļ.			
d muros de concreto con capacidad	pórticos de concreto con	2.5	00 SA /	emite	00.581	permite	Si	72 m
minima de disipación de energia	capacidad minima de	4.5	no se i	zemnike	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jennie	"	
(DMA)	disipación de energía (DMI)				ļ			
e muros de concreto con capacidad	pórticos losa-columna (Nota	2.0	no se i	permite	no se i	ermite	SI	18 m
minima de disipación de energia	3) con capacidad minima de		,,,		"" ""	• • • • • • • • • • • • • • • • • • • •	1	
(DMI)	disipación de energía (DMI)							
f muros de mamposteria reforzada	porticos de concreto con	4.5	Si	30 m	Šì	45 m	Si	45
de bloque de perforacion vertical	capacidad especial de						İ I	
(DES) con todas las celdas relienas	disipación de energía (DES)							
g muros de mamposteria reforzada	porticos de concreto con	3.5	Şi	30 m	Si	45 m	\$1	45
de bloque de perforación vertical	capacidad especial de			ļ			i	
(DMO)	disipación de energía (DES)			<u> </u>				
h muros de mamposteria reforzada	porticos de concreto con	2.5	no se p	permite	SI .	30 m	și și	45
de bloque de perforación vertical	capacidad moderada de				Ì	1	1	
(DMO)	disipación de energía (DMO)							
i. muros de mamposteria confinada	porticos de concreto con	1.5	no se p	permite	Grupo	18 m	Grupo	21 m
(DMO - capacidad moderada de	capacidad moderada de				1		\	
disipación de energia)	disipación de energía (DMO)				<u> </u>		<u> </u>	18 m
1 muros de mampostería confinada	porticos de concreto con	1.5	noser	permite	nose	permite	Grupo	10111
(DMO - capacidad moderada de	capacidad mínima de				1		i '	
disipación de energia)	disipación de energía (DMI)				SI	30 m	Si	45
k muros de mamposteria de cavidad	porticos de concreto con	4.0	no se i	permite	1 51	30111	3"	7.7
reforzada (DES - capacidad especial	capacidad moderada de					}		
de disipación de energía)	disipacion de energia (DMO) porticos de concreto con	2.0	DO 80 1	nermite	DO SE	permite	Si	45
I. muros de mamposteria de cavidad	, , , , , , , , , , , , , , , , , , , ,	2.0	no se permite		110 ac	J	["	, ,
reforzada (DES - capacidad especial	capacidad minima de disipación de energía (DMI)	·	i		1		J	
de disipación de energía)		<u> </u>	L				<u></u>	
3. Pórticos con diagonales concéntr		5.0	SI	30 m	Si	45 m	Si.	60 m
a. porticos de acero estructural con	porticos de acero estructural	3.0	31	30.111) a	731"	,	
diagonales concentricas (DES)	no resistentes a momentos	3.5	00.55	permite	Sı	24 m	Ši Ši	30 m
c pórticos de concreto con	porticos de concreto con capacidad moderada de	3.5	110 50	pennie] 3	-7'''] "	55
diagonales concéntricas con	capacidad moderada de disrpacion de energía (DMO)	}	l		1	Ī		Ì
capacidad moderada de disipación de energía (DMO)	l disibación de evergra (NMO)	}	ł					
de elicidia (DMO)	<u> </u>		L					

^{1 -} El sistema combinado es un sistema estructural en el cual (a) las cargas verticales son resistidas por un portico no resistente a momentos esencialmente completo, y las fuerzas norizontales son resistidas por muros estructurales o porticos con diagonales, o (b) las cargas verticales y horizontales son resistidas por un portico resistente a momentos, esencialmente completo, combinado con muros estructurales o porticos con diagonales, y que no cumple los requisitos de un sistema dual

^{2 -} Para edificaciones clasificadas como irregulares el valor de R_a debe multiplicarse por ϕ_a y por ϕ_b para obtener $R = \phi_b \phi_a R_a$ (Vease A 3 3 3)

^{3 -} Los pórticos losa-columna incluyen el reticular celulado

^{4 –} En sistemas prefabricados debe emplearse R_a = 1.5. Vease A 3.1.7.

Tabla A.3-1
SISTEMA ESTRUCTURAL DE MUROS DE CARGA (Nota 1)

A. SISTEMA DE MUROS DE CARGA		Valor	zonas de amenaza sismica						
		de	alta intermedia		media	ba	aja		
Sistema de resistencia sismica (fuerzas horizontales)	Sistema de resistencia para cargas verticales	R ₀ (Note 2)	uso permit	altura max	uso permit	altura max	uso permit	altura max	
1. Paneles de cortante de madera	muros ligeros de madera laminada	5.0	SI	6 m	si	9 m	SI	12 m	
2. Muros estructurales				<u> </u>	 	1		1.	
a muros de concreto con capacidad especial de disipación de energía (DES)	el mismo	7.0	SI	72 m	SI	sin limite	\$i	sin limite	
 b. muros de concreto con capacidad moderada de disipación de energía (DMO) 	el mismo	4.5	no se j	permite	\$I	72 m	si	sın limite	
c. muros de concreto con capacidad minima de disipación de energia (DMI)	el mismo	2.5	no se j	permite	no se	permite	şi	45 m	
d. muros de mampostería reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	el mismo	4.5	SI	45 m	si	60 m	Si	sın limite	
muros de mampostería reforzada de bloque de perforación vertical (DMO)	el mismo	3.5	ŞI	30 m	SÌ	40 m	si	sın límite	
f. muros de mamposteria parcialmente reforzada de bloque de perforación vertical (DMI)	eł mismo	2.5	Grupo I	2 pisos	si	12 m	ŚI	18 m	
g. muros de mamposteria confinada (DMO - capacidad moderada de disipación de energía)	el mismo	1.5	Grupo E y 11	15 m	Grupo I y II	18 m	Grupo I y []	21 m	
h. muros de mampostería de cavidad reforzada (DES - capacidad especial de disipación de energía)	el mismo	4.0	SI	45 m	\$I	60 m	SI	sin límite	
i. muros de mamposteria no reforzada (<i>DMI</i> - no tiene capacidad de disipación de energía)	el mismo	1.0	no se p	ermite	no se permite		Grupo I (Nota 3)	2 pisos	
3. Pórticos con diagonales (las diago	onales ilevan fuerza vertical)								
a. pórticos de acero estructural con diagonales concentricas (DES)	el mismo	5.0	SI	24 m	SI	30 m	SI	sin limite	
b pórticos con diagonales de concreto con capacidad moderada de disipación de energía (DMO)	el misma	3.5	no se p	ermite	SI	30 m	Si	30 m	
c. pórticos de madera con diagonales	el mismo	2.0	SI	12 m	si	15 m	SI	18 m	

- 1 El sistema de muros de carga es un sistema estructural que no dispone de un pórtico esencialmente completo, en el cual las cargas verticales son resistidas por los muros de carga y las fuerzas horizontales son resistidas por muros estructurales o pórticos con diagonales
- 2 Para edificaciones clasificadas como irregulares el valor de R_a debe multiplicarse por ϕ_a y por ϕ_p para obtener $R = \phi_p \phi_a R_a$ (Véase A.3.3.3)
- 3 La mampostería no reforzada solo se permite en las regiones de las zonas de amenaza sísmica baja donde A_a sea menor o igual a 0 05 cuando se trata de edificaciones del grupo de uso 1, de uno y dos pisos.
- 4 En sistemas prefabricados debe emplearse R_s = 1 5. Véase A 3 1 7

Tabla A.3-2
SISTEMA ESTRUCTURAL COMBINADO (Nota 1)

B. SISTEMA COMBINADO		Valor		zonas de amenaza sísmica					
		de	а	lta	inten	nedia	baja		
Sistema de resistencia sismica	Sistema de resistencia	R_0	USO	altura	uso	altura	uso	altura	
(fuerzas horizontales)	para cargas verticales	(Nota 2)	permit	max	permit	max	permit	max	
1. Pórticos de acero con diagonales									
a. Pórticos de acero con diagonales	pórticos de acero estructural	7.0	SI .	45 m	şí	60 m	si	sin	
excéntricas	resistentes a momentos con		[1			limite	
	capacidad minima de		ļ		l		<u> </u>		
	disipación de energia (DMI)								
b Pórticos de acero con diagonales	pórticos de acero estructural	6.0	ŠI	30 m	Sı .	45 m	si	SIN	
excéntricas	no resistentes a momentos				<u></u>			limite	
2. Muros estructurales				70					
a. muros de concreto con capacidad	pórticos de concreto con	7.0	si	72 m	SI	SI/I	Sı Sı	sin.	
especial de disipación de energia (DES)	capacidad especial de			'	1	limite		limite	
	disipación de energía (DES)					72 m			
b muros de concreto con capacidad moderada de disipación de energía	porticos de concreto con	5.0	no se p	emite	SI	72 m	Si	Sin	
(DMO)	capacidad moderada de				l :			limite	
c. muros de concreto con capacidad	disipación de energía (DMO)	3.5				18 m		27 m	
moderada de disipación de energía	pórticos losa-columna (Nota 3) con capacidad moderada	3.0	no se p	emite	\$J	io m	SI S	27 m	
(DMO)	de disipación de energía						1		
(5100)	(DMO)				ļ				
d. muros de concreto con capacidad	porticos de concreto con	2.5	no se p	vermile	no se r	vermite	Si	72 m	
minima de disipación de energía	capacidad minima de	2.5	110 Se h	/CITIE	110 36 1	ennice.	31	72 111	
(DMA)	disipación de energía (DMI)						l i		
e, muros de concreto con capacidad	pórticos losa-columna (Nota	2.0	no se p	ermite	no se r	ermite	Sı	18 m	
minima de disipación de energía	3) con capacidad minima de			- Contract	,,,,,,,,,				
(DMI)	disipación de energía (DMI)				1		1		
f. muros de mamposteria reforzada	porticos de concreto con	4.5	SI	30 m	SI	45 m	Si	45	
de bloque de perforación vertical	capacidad especial de							•	
(DES) con todas las celdas relienas	disipación de energía (DES)								
g. muros de mamposteria reforzada	porticos de concreto con	3.5	SI	30 m	Si	45 m	Si	45	
de bioque de perforación vertical	capacidad especial de				•				
(DMO)	disipación de energía (DES)	1	i						
h. muros de mamposteria reforzada	pórticos de concreto con	2.5	no se p	ermite	ŞI	30 m	Si	45	
de bloque de perforación vertical	capacidad moderada de		·						
(DMO)_	disipación de energia (DMO)								
i, muros de mamposteria confinada	porticos de concreto con	1.5	no se p	ermite	Grupo	18 m	Grupo	21 m	
(DMO - capacidad moderada de	capacidad moderada de]			'	
disipación de energía)	disipación de energia (DMO)								
j muros de mampostería confinada	pórticos de concreto con	1.5	no se p	ermite	no se p	ermite	Grupo	18 m	
(DMO - capacidad moderada de	capacidad minima de								
disipación de energía)	disipación de energia (DMI)								
k muros de mamposteria de cavidad	pórticos de concreto con	4.0	no se p	ermite	SI	30 m	Si	45	
reforzada (DES - capacidad especial	capacidad moderada de								
de disipación de energia)	disipación de energia (DMO)				L			4.5	
i. muros de mampostería de cavidad	porticos de concreto con	2.0	по se permite		noser	permite	St	45	
reforzada (DES - capacidad especial	capacidad minima de								
de disipacion de energía)	disipacion de energía (DMI)				L				
3. Porticos con diagonales concentr						16	 -	60	
a. pórticos de acero estructural con	pórticos de acero estructural	50	SI	30 m	Si	45 m	SI	60 m	
diagonales concéntricas (DES)	no resistentes a momentos	. <u> </u>			L	- 34	┝┈┷┈┤	20	
e pórticos de concreto con	pórticos de concreto con	3.5	no se p	ermite	\$)	24 m	Şı	30 m	
diagonales concentricas con	capacidad moderada de				ŀ	1	i		
capacidad moderada de disipación	disipación de energia (DMO)								
de energia (DMO)	[البيسييل							

- 1 El sistema combinado es un sistema estructural en el cual (a) las cargas verticales son resistidas por un portico no resistente a momentos, esencialmente completo, y las fuerzas norizontales son resistidas por muros estructurales o porticos con diagonales, o (b) las cargas verticales y horizontales son resistidas por un portico resistente a momentos, esencialmente completo, combinado con muros estructurales o pórticos con diagonales, y que no cumple los requisitos de un sistema dual
- 2 Para edificaciones clasificadas como irregulares el valor de R_{ii} debe multiplicarse por φ_a y por φ_p para obtener R = φ_p φ_a R_{ii} (Véase A 3 3.3)
- 3 Los pórticos losa-columna incluyen el reticular celulado.
- 4 En sistemas prefabricados debe emplearse R_{ii} = 1.5 Vease A 3.1.7

Tabla A.3-3 SISTEMA ESTRUCTURAL DE PORTICO (Nota 1)

C. SISTEMA DE PORTICO		Valor	zonas de amenaza sísmica						
		de	а	lta	intermedia		ba	ija	
Sistema de resistencia sísmica	Sistema de resistencia	R₀ :	uso	altura	uso	altura	uso	aitura	
(fuerzas horizontales)	para cargas verticales	(Note 2)	permit	max	permit	max	permit	max	
Pórticos resistentes a momentos disipación de energía (DES)	con capacidad especial de								
a de concreto (DES)	et mismo	7.0	SI	sin limite	SI	sin limite	\$1	sin limite	
b de acero (DES)	el mismo	7.0 (Nota-3)	si	sin limite	Si	s:n limite	Si	sin jimite	
Pórticos resistentes a momentos o disipación de energía (DMO)	on capacidad moderada de		l	<u></u>	L	L	<u> </u>		
a de concreto (DMO)	el mismo	5.0	no se ;	permite	si	sın límite	SI	sin limite	
b de acero (DMO)	el mismo	5.0 (Nota-3)	no se ;	permite	51	sin limite	si	sın Ilmite	
Pórticos resistentes a momentos disipación de energia (DMI)	con capacidad minima de						<u></u>		
a. de concreto (DMI)	el mismo	2.5	no se p	permite	no se i	ermite	si	şın limite	
b. de acero (<i>DMI</i>)	el misma	3.5 (Nota-3)	no se p	permite	no se permite		si	sin Ilmite	
4. Pórticos losa-columna (incluye reti	cular celulado)							L, ,,,,,	
a de concreto con capacidad moderada de disipación de energía (DMO)	el mismo	2.5	no se p	ermite	SI	15 m	SI	21 m	
b de concreto con capacidad minima de disipación de energia (DMI)	el mismo	1.5	no se permite		по ѕе ј	permite	si	15 m	
5. Estructuras de péndulo invertido a Porticos de acero resistentes a momento con capacidad especial de	e) mismo	2.5 (Nota-3)	Ši	sın limite	SI	sin limite	Si	sın limite	
disipación de energía (DES) b Pórticos de concreto con capacidad especial de disipación de	el mismo	2.5	Sí	sın timite	ŞI	sın limite	Si	sın limite	
energia (DES) c. Pórticos de acero resistentes a momento con capacidad moderada de disipación de energia (DMO)	el mismo	1.5 (Note-3)	no se i	loermile	si	sın limite	si	sin Jimate	

- 1 El sistema de pórtico es un sistema estructural compuesto por un portico espacial, resistente a momentos, esencialmente completo, sin diagonales, que resiste todas las cargas verticales y las fuerzas horizontales
- 2 Para edificaciones clasificadas como irregulares el valor de R₀ debe multiplicarse por φ_a y por φ_a para obtener R = φ_a φ_a R_a (Vease A.3 3 3).
 3 Cuando se trate de estructuras de acero donde las uniones del sistema de resistencia sismica son soldadas, el valor de R₀ debe multiplicarse
- 4 En sistemas prefabricados debe emplearse R_{ii} = 1.5. Vease A.3.1.7

Tabla A.3-4 SISTEMA ESTRUCTURAL DUAL (Note 1)

D. SISTEMA DUAL		Valor							
שו שורי אוני אליי		De	alta intermedia baja						
Sistema de resistencia sísmica (fuerzas horizontales)	Sistema de resistencia para cargas verticales	R ₀ (Note 2)	uso permit	altura max	uso permit	altura max	uso permit	altura max	
1. Muros estructurales					,				
a. muros de concreto con capacidad especial de disipación de energía (DES)	pórticos de concreto con capacidad especial de disipación de energía (DES)	8.0	SI	sin límite	SI	sin Ilmite	și Si	sin limite	
b. muros de concreto con capacidad especial de disipación de energía (DES)	pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	8.0	Si	sin Timite	Si	sin limite	5 I	sin limite	
c muros de concreto con capacidad moderada de disipación de energía (DMO)	porticos de concreto con capacidad moderada de disipación de energía (DMO)	6.0	по ѕе	permite	SI	sin limite	SI	sin limite	
d muros de concreto con capacidad moderada de disipación de energía (DMO)	pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	6.0	no se j	permite	si	sin límite	si	sin limite	
e muros de mampostería reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	pórticos de concreto con capacidad especial de disipación de energia (DES)	5.5	si	45 m	si	45 m	SI	45 m	
f muros de mampos cerdas relienas f muros de mampos cerdas reforzada de bloque de perforación vertical (DES) con todas las celdas relienas	pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	5.5	SI	45 m	SÍ	45 m	gi	45 m	
g muros de mamposteria reforzada de bloque de perforación vertical (DMO)	pórticos de concreto con capacidad especial de disipación de energia (DES)	4.5	\$I	35 m	Si	35 m	şi	35 m	
h, muros de mampostería reforzada de bloque de perforación vertical (DMO)	porticos de acero resistentes a momentos con capacidad especial de disipación de energia (DES)	45	şı	35 m	SI	35 m	şi	35 m	
i muros de mamposteria reforzada de bloque de perforación vertical (DMO)	pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	3.5	no 5e	permite	ŞI	30 m	\$I	30 m	
j muros de mamposteria reforzada de bloque de perforación vertical (DMO)	porticos de concreto con capacidad moderada de disipación de energía (DMO)	3.5	no se	permite	si	30 m	şi	30 m	
2 Pórticos de acero con diagonales	excéntricas	<u></u>			r	sın	T si	SIT	
a pórticos de acero con diagonales excéntricas	pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	8.0	si	sin fimite	SI	limite		límite	
b, porticos de acero con diagonales excentricas	porticos de acero resistentes a momentos con capacidad moderada de disipación de energia (DMO)	6.0	no se	permite	si	60 m	si	sin limite	
3. Pórticos con diagonales concént	ricas	ļ			T:	sin	SI	sın	
a. de acero con capacidad especial de disipacion de energía (DES)	pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	6.0	SI 	sin limite	SI	limite		limite	
b de acero con capacidad minima de disipación de energía (<i>DMI</i>)	porticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	5.0	no se	permite	Si	60 m	Si	sin limite	
d. de concreto con capacidad moderada de disipación de energía (DMO)	porticos de concreto con capacidad moderada de disipación de energía (DMO)	4.0	no se	permite	ŞÎ	24 m	SI	30 m	

Tabla A.3-4 (Continuación) SISTEMA ESTRUCTURAL QUAL

- 1 El sistema dual es un sistema estructural que tiene un pórtico espacial resistente a momentos y sin diagonales, combinado con muros estructurales o porticos con diagonales. Para que el sistema estructural se pueda clasificar como sistema dual se deben cumplir los siguientes requisitos (a) El pórtico espacial resistente a momentos, sin diagonales, esencialmente completo, debe ser capaz de soportar las cargas verticales. (b) Las fuerzas horizontales son resistidas por la combinación de muros estructurales o pórticos con diagonales, con el portico resistente a momentos, el cual puede ser un pórtico de capacidad especial de disipación de energía (DES), cuando se trata de concreto reforzado o acero estructural un pórtico con capacidad moderada de disipación de energía de concreto reforzado, o un pórtico con capacidad minima de disipación de energía de acero estructural El pórtico resistente a momentos, actuando independientemente, debe diseñarse para que sea capaz de resistir como mínimo el 25 por ciento del cortante sismico en la base. (c) Los dos sistemas deben diseñarse de tal manera que en conjunto sean capaces de resistir la totalidad del cortante sismico en la base, en proporción a sus rigideces relativas, considerando la interacción del sistema dual en todos los niveles de la edificación, pero en ningún caso la responsabilidad de los muros estructurales o los porticos con diagonales puede ser menor del 75 por ciento del cortante sísmico en la base.
- 2 Para edificaciones clasificadas como irregulares el valor de R₀ debe multiplicarse por φ₀ y por φ₀ para obtener R = φ₀ φ₀ R₀ (Véase A 3 3 3)
- 3 En sistemas prefabricados debe emplearse R_e = 1.5. Vease A.3.1.7

Tabla A.3-5 Mezcia de sistemas estructurales en la altura

Requisitos Descripción de la combinación Estructura flexible apoyada sobre una estructura con mayor rigidez Se permite que esta combinación de sistemas estructurales Puede utilizarse los requisitos dados aquí si la estructura cumple las siguientes condiciones: no se considere irregular ($\phi_0 = \phi_1 = 1.0$), y el sistema puede diseñarse sismicamente utilizando el método de la fuerza horizontal equivalente, tal como lo prescribe el Capítulo A.4, (a) ambas partes de la estructura, consideradas separadamente, puedan ser clasificadas como de la siguiente manera: regulares de acuerdo con los requisitos de A.3.3, (1) La parte superior flexible puede ser analizada y (b) el promedio de las rigideces de piso de la parte diseñada como una estructura separada, apoyada para efecto de las fuerzas horizontales por la parte mas rigida baja sea por lo menos 10 veces el promedio de las rigideces de piso de la parte alta v inferior, usando el valor apropiado de Ro para su sistema estructural (c) el período de la estructura, considerada como un todo, no sea mayor de 1 1 veces el período de (2) La parte rigida inferior debe ser analizada y diseñada la parte superior, al ser considerada como una como una estructura separada, usando el valor apropiado estructura independiente empotrada en la base de R_a para su sistema estructural, y las reacciones de la parte superior, obtenidas de su análisis deben ser Si no se cumplen las condiciones anteriores la amplificadas por la relación entre el valor de R₀ para la parte estructura se considera irregular y deben seguirse superior y el valor de R_o de la parte inferior los requisitos de A.3.3. Estructura rigida apoyada sobre una estructura con menor rigidez Cubre edificaciones en las cuales se suspende (1) La parte superior rigida debe diseñarse usando el valor apropiado de Ro para su sistema estructural, afectado por antes de llegar a la base de la estructura, parcial o los coeficientes ϕ_p y ϕ_a que le correspondan a esta porción totalmente, un sistemas estructural más rígido que el que llega a base de la estructura de la estructura considerada como una estructura separada, siguiendo los requisitos de A.3.3.3. Este tipo de combinación de sistemas estructurales en la altura presenta inconvenientes en su (2) El valor del coeficiente de capacidad de disipacion de comportamiento sismico energia, R, que se aplica a la parte inferior de menor rigidez, debe ser dos tercios (2/3) del menor valor de R_a de En aquellos casos en que se tenga que recurrir a los sistemas estructurales que se combinan, utilizando para este tipo de combinación, la estructura se esta porción $\phi_n = \phi_s = 10$. considera como irregular y deben cumplirse los requisitos especiales dados aquí: (3) El sistema flexible que da apoyo debe ser un sistema de capacidad especial de disipación de energía (DES), indistintamente de la zona de amenaza sísmica donde se encuentre localizada la edificación (4) El entrepiso de transición debe ser un diafragma rigido en su propio plano. (5) Las fuerzas internas (momentos, fuerzas cortantes y fuerzas axiales) que tenga el sistema rígido en el punto en que se suspende, deben ser resistidas en su totalidad por el elemento o elementos que lo soportan. Debe tenerse especial cuidado con la resistencia a los momentos de vuelco impuestos por los elementos del sistema rigido a los

requisitos de A 3.6 12

elementos del sistema flexible. Además deben cumplirse los

Tabla A.3-6 Irregularidades en planta

Tipo	Descripción de la irregularidad en planta	фр	Referencias
1P	Irregularidad torsional La irregularidad torsional existe cuando la máxima deriva de piso de un extremo de la estructura, calculada incluyendo la torsión accidental y medida perpendicularmente a un eje determinado, es más de 1.2 veces la deriva promedio de los dos extremos de la estructura, con respecto al mismo eje de referencia	09	A.3.3.6, A 3 4.2, A.3.6.3.1, A.3.6.7.1, A.3.6.8.4, A.5 2.1.
2P	Retrocesos excesivos en las esquinas La configuración de una estructura se considera irregular cuando ésta tiene retrocesos excesivos en sus esquinas. Un retroceso en una esquina se considera excesivo cuando las proyecciones de la estructura, a ambos lados del retroceso, son mayores que el 15 por ciento de la dimensión de la planta de la estructura en la dirección del retroceso.	0.9	A.3.4 2, A.3.6.8.4, A 3 6 8.5, A.5.2.1,
3P	Discontinuidades en el diafragma Cuando el diafragma tiene discontinuidades apreciables o variaciones en su rigidez, incluyendo las causadas por aberturas, entradas, retrocesos o huecos con áreas mayores al 50 por ciento del área bruta del diafragma o existen cambios en la rigidez efectiva del diafragma de más del 50 por ciento, entre niveles consecutivos, la estructura se considera irregular.	0.9	A.3.3.7, A.3.4.2, A.3.6.8.4, A 5.2.1.
4P	Desplazamientos del plano de acción de elementos verticales Cuando existen discontinuidades en las trayectorias de las fuerzas inducidas por los efectos sísmicos, tales como desplazamientos del plano de acción de elementos verticales del sistema de resistencia sísmica. la estructura se considera irregular	08	A.3 3 7, A.3 4.2, A.3 6.8 4, A.3.6.12, A.5.2.1.
5P	Sistemas no paralelos Cuando las direcciones de acción horizontal de los elementos verticales del sistema de resistencia sísmica no son paralelas o simétricas con respecto a los ejes ortogonales horizontales principales del sistema de resistencia sísmica, la estructura se considera irregular.	0.9	A 3.4.2, A.3.6 3 1, A.5.2.1.

^{1 –} En zonas de amenaza sísmica intermedia para edificaciones pertenecientes al grupo de uso I, la evaluación de irregularidad se puede limitar á las irregularidades de los tipos 1P, 3P y 4P (Véase A 3 3.7).

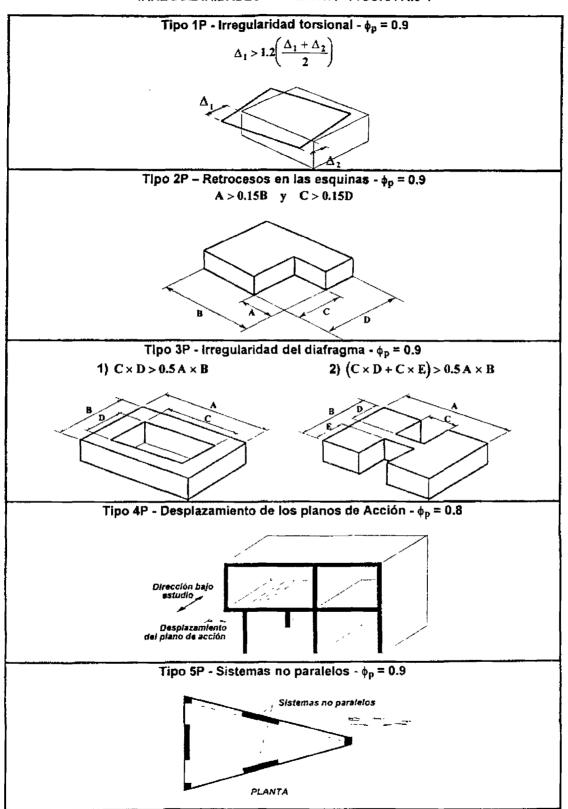

^{2 –} En zonas de amenaza sísmica baja para edificaciones pertenecientes a los grupos de uso I y II, la evaluación de irregularidad se puede limitar a la irregularidad tipo 1P (Véase A.3.3 6).

Tabla A.3-7 Irregularidades en la altura

Tipo	Descripción de la irregularidad en altura	φ.	Referencias
1A	Piso flexible (Irregularidad en rigidez) Cuando la rigidez ante fuerzas horizontales de un piso es menor del 70 por ciento de la rigidez del piso superior o menor del 80 por ciento del promedio de la rigidez de los tres pisos superiores, la estructura se considera irregular.	09	A.3.3.5.1, A.3.4.2,
2A	Irregularidad en la distribución de las masas Cuando la masa, m _i , de cualquier piso es mayor que 1.5 veces la masa de uno de los pisos contiguos, la estructura se considera irregular. Se exceptúa el caso de cubiertas que sean más livianas que el piso de abajo.	0.9	A.3.3.5.1, A.3.4.2.
3A	Irregularidad geométrica Cuando la dimensión horizontal del sistema de resistencia sísmica en cualquier piso es mayor que 1.3 veces la misma dimensión en un piso adyacente, la estructura se considera irregular. Se exceptúa el caso de los altillos de un solo piso	0.9	A 3 4 2
4A	Desplazamientos dentro del plano de acción Cuando existen desplazamientos de los elementos verticales del sistema de resistencia sismica, dentro de su plano de acción, mayores que la dimensión horizontal del elemento, la estructura se considera irregular	0.8	A 3.3.7, A.3.4.2, A.3 6.12
5A	Piso débil – Discontinuidad en la resistencia Cuando la resistencia del piso es menor del 70 por ciento de la del piso inmediatamente superior, entendiendo la resistencia del piso como la suma de las resistencias de todos los elementos que comparten el cortante del piso para la dirección considerada, la estructura se considera irregular.	0.8	A.3.2.4.1, A.3.3.6, A.3.3.7, A.3.4.2.

- 1- Cuando la deriva de cualquier piso es menor de 1.3 veces la deriva del piso siguiente hacia arriba, puede considerarse que no existen irregularidades de los tipos 1A, 2A, ó 3A (Véase A.3.3.5.1).
- 2 En zonas de amenaza sísmica intermedia para edificaciones pertenecientes al grupo de uso I, la evaluación de irregularidad se puede limitar a las irregularidades de los tipos 4A y 5P (Véase A.3.3.7).
- 3 En zonas de amenaza sísmica baja para edificaciones pertenecientes a los grupos de usos I y II, la evaluación de irregularidad se puede limitar a la irregularidad tipo 5A (Véase A 3 3 6).

IRREGULARIDADES EN PLANTA - FIGURA A.3-1

IRREGULARIDADES EN LA ALTURA - FIGURA A.3-2

Tipo 1A - Piso flexible - ϕ_8 = 0.9 Rigidez K_C < 0.70 Rigidez K_D o Rigidez K_C < 0.80 $(K_D + K_E + K_F)$ /3	E D C B A
Tipo 2A – Distribución masa - ϕ_a = 0.9 $m_D > 1.50 \ m_E$ o $m_D > 1.50 \ m_C$	E
Tipo 3A – Geométrica - φ _a = 0.9 a > 1,30 b	F E D C B A D A
Tipo 4A - Desplazamiento dentro del plano de acción - φ _a = 0.8 b > a	F E D C B
Tipo 5A - Piso débil - φ _a = 0.8 Resistencia Piso B < 0.70 Resistencia Piso C	F E D C B