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ABSTRACT

Regional damage estimation is a necessary step in the seismic policy process,
which is often hampered by a lack of information on the seismic resistiveness of
buildings and other structures. This paper describes an expert system for
determining the construction type of buildings, based on information obtainable
from a visual inspection. The expert system is incorporated in a computer
program for estimation of seismic damage to buildings. Several approaches are
considered in the development of the expert system, including the use of special
types of neural nets, and treatment of uncertainty using both Bayesian Probability
models and Dempster-Shafer Calculus.

INTRODUCTION

Estimation of losses due to earthquake shaking and related hazards is a necessary step in
the seismic policy process. The seismic vulnerability of a structure depends largely on its
construction type. Consequently, accurate estimation of post earthquake damage to buildings
relies on the correct determination of their construction types.

The use of expert systems to obtain and employ information interactively to determine the
construction type and estimated damage to buildings, is a recent innovation in seismic damage
estimation. The advantage in the use of expert systems is that fairly general information
obtainable from a non-engineer can be used in combination with the expert system's knowledge
base to make fairly complex assessments of the building's construction type and seismic
vulnerability.

This paper discusses an expert system incorporated in a damage estimation program, and
describes the various steps in its development. Different approaches were considered in this
study, particularly the use of neurological tables (fuzzy cognitive maps), which are easier to
construct than traditional rule-based expert systems.
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Handling uncertainty 1s of major concern in developing an expert system. In cases where
there is more than one possible structure type, the likelihood of each type should be determined
This paper explains how Bayesian probability can be used to determine the uncertainty in the
results of the expert system and demonstrates that fuzzy cognitive maps can yield identical results
to those obtained from the Bayesian probabilistic models. The use of Dempster-Shafer Calculus
[1.2] to handle uncertainty in the expert system is also discussed

DEVISING THE EXPERT SYSTEM

In order to determine the construction type of a building, the expert system obtains
information from the user through a series of general questions which can easily be answered
based on a visual inspection of the building. The program also displays graphical images to assist
the user in answering these questions as shown in Figure 1.

The program then employs the user’s responses to determine the possible structure types, and the
relative likelthood of each one

The expert system developed for this project consists of the following components

1) A graphical interface to facilitate user interaction, enabling the user to
provide responses to the different questions presented by the expert
system. This interface was developed using the Microsoft Windows
programming environment.

2) An "inference engine", which uses the responses provided by the userin a
reasoning chain to determine the different possible structure types.

Two approaches were considered in designing the inference engine The first was the
classical rule-based approach in which knowledge is represented in the form of "if-then" rules, and
responses provided by the user represent the known facts. The known facts are then propagated
through the rules using the forward chaining mechanism to determine the possible structure types
This approach worked well, however, it required substantial development time to design the
inference engine, encode the rules, and test the whole system,

The second approach considered in designing the inference engine was to use "fuzzy
cognitive maps”. A fuzzy cognitive map is a neural network which can represent knowledge like
anv expert system. This method, first suggested by Kosko [3. 4], has some advantages over
traditional rule-based systems, particularly in 1ts ability to deal with multiple sources of knowledge
even when they disagree. In addition, since components of the expert system such as the
inference engine are already incorporated in the neural network, fuzzy cognitive maps result in
considerable savings in development time over rule-based systems

This second approach employs 2 "Hopfield neural network”, consisting of a series of
nodes, each of which represents a particular concept or object that is relevant to the problem.
Weighted, directed connections among the nodes represent the relative strengths of the causal
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relationships. A positive weight means the source node causes the destination node to increase in
significance or become more powerful, a negative weight means the source causes the destination
to decrease or become less powerful.

In the present implementation, the nodes of the firzzy cognitive map represent one of two
things - (1) possible structural types, or (2) physical/visual attributes of buildings. In all, there are
34 nodes in the map, comprised of 13 structure types (referred to as "hypotheses”) and 21
physical attributes (referred to as "evidence") The 13 structure types are intended to represent an
exhaustive list of possible structure types, and correspond to those enumerated in a previous study
f5] Table 1 lists these possible structure types. The 21 evidences represent physical attributes of
a building that may be determined by visual inspection, such as evidence of wood framing or brick
masonry. Weights are assigned to indicate causal relationships between nodes As an example,
ihe relationship between unreinforced masonry (URM) building (structure type) and evidence of
masonry with header courses (physical attribute) might be represented by a weight of 0.6 (from
the node representing the header courses to that representing the URM buildings), indicating that
if' a building is a URM, then there is a strong likelihood of brick header courses being visible.
Evidences can also be connected together by weights so that the appearance of one evidence may
increase or decrease the likelihood of other evidences. In our fuzzy cognitive map, weights
linking evidences to all other evidences are zeros, as are weights linking structure types to one
another. In the neural network implementation, the evidences lead to increased or decreased
probabilities of the hypotheses, but there is no reverse influence of the hypotheses on the
evidences. The non-zero weights in the map were obtained by eliciting the opintons of a panel of
experts The probability of each structure type, given certain evidences, is obtained from the map
as an output.

It has been established that a Hopfleld network based on a neurological 1able that is symmetric
and has zeros along the diagonal is guaranteed to stabilize The fuzzy cognitive map of the
present implementation has zeros along the diagonal (causative relationship of structure types or
evidences to themselves), but is not symmetric It is therefore not guaranteed to converge,
however, it was found that our implementation does, in fact, converge.

HANDLING UNCERTAINTY IN EXPERT SYSTEMS

At the end of the user-query, the expert system arrives at a [list of possible structure types
Each type has a certain degree of probability associated with it, based on the user's responses.
This section discusses how the probabilities are determined by the expert system, and will
demonstrate that the probabihistic models used in the rule-based expert system and the fuzzy
cognitive map can yield identical resuits. A procedure for handling the probabilities in the system
using Dempster-Shafer Calculus [1,2] is also presented.

In the rule-based expert system, uncertainty is handled using a special form of the
Bayesian updating rule, which we shall refer to as the logarithmic form of the Bayesian Updating
Formula. A dertvation of the logarithmic Bayesian Updating Formula follows.
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The standard Bayes' Rule is:

Hy)
P(Hje;) =—2L— Pee| -P(H;)
P(ej) M

P (H; | ¢j) is known as the posterior probability of /; given e;.
P(H};) is known as the prior probability of H;.
Similarly,

Ple[H.)

P(Hle,) = P(H)

Ple,) 2)

Where H ; is the complement, or negation of H;.
Dividing Equation 1 by Equation 2

PHe) Pl P

P(Hile,) P(ej|H,-) P(H)
which can be written as

O(H e,) =Ale,|H,)-O(H,) (3)

Where

O(Hr.]e )is the "posterior odds" of A, given e, and is equal to ——
! ! J PH ,:ej)

PUH,)
P(H)

r

O(H,)is the "prior odds" of A, and is equal to

Ple,|H))

and FL(e..H.) is the "likelihood" of ¢ . given /. and is equal to ————
i it J = 1 P(EJ.|HI')

In cases where there is more than one evidence (ej .y}, the posterior probability of /; given
. Bp) I8!
P(Hej..e) PlejlHy s ) P(H; €01 00)

P(Hile;...e) = (ej---en) P(e;...en)
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Assuming that ali the evidences are conditionally independent,

_Ple,|H)P(e,,,|H,)... Ple,|H,)P(H,)

Ple,...e,)

PHe,....e,)

By following the same derivation used in the case of a single evidence, one can show that

OHe,...e,) =Ale,|H,). Me, ., |H,)... Ae,[H,).O(H,) @
where O (#; | ej...ep,) is the posterior odds of /; given the evidences (ej.--ep).
Taking the logarithm of both sides of Equation 4

In O(H, |e)...e,,) =ln(A(eJ|H, N Hn(ile, |7 N+ -i-ln(,‘i(e,,lH,)) +Hn(O(H)) (5)

Since A (¢; | H;), O(H1,) takes values in the range [0, o], In (Me; | #;)) and In (O(H;))
will take values in the range [-co, o]

If evidence ¢; and the hypothesis /; are independent, then
Ple;if, P(e
Ple,[H1) Ple;)

This means that In (\Me; | H})) is positive if ej support /7, negative if e; negates or contradicts 5,
and zero if e, has no et{ect on H; {e; and H; are independent). Once ﬂie logarithmic values of the
posterior odds are calculated, the posterior probabilities can be derived from them as follows.

In(O(H,le;...e0)) = YIn{Ae|H,)) Hn(OH;))
k=j

n
Call the above quantity sum, i.e , sum = EIn(A(ekIH,-)) Hn(O(H;))

k=y
O(H,le,...ey) =e™"
P(H,—lej. €y) s
| ——P(H,[ej,..en)
eSh‘”‘l 1 . .
P(Hile,..e,) T —— =sigmoid (sum)
where ©)
sigmoid(x) = !

14e™*
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This demonstrates that the Hopfield net can result in the same probabilities given by Bayes' rule if:

! The evidences are connected to the hypotheses by weighted hinks and each
link has a weight equal to In (A(e; | H;))

32 Each node which represents a hypothesis has a bias term equal to
In (O(H;))
3 All nodes which represent hypotheses have a sigmoid activation function.

This probabihstic model was implemented 1n both expert system approaches discussed
carlier and has resulted in satisfactory performance

The prior odds are calculated assuming equal probabilities to each of 13 possible structure
tvpes Therefore

1
P(H)—i O(H,) = __ 1
R LY ! I_L 12
13

The vatues of In (A(e¢ 7l H,)) were obtained directly by consulting a panel of experts on
how strongly each structural type supported the presence or absence of the different evidences
The experts were asked to give a value between -1 and +1 for each value of In (A(e 2y LH D)

Using Dempster-Shafer Calculus to Handle Uncertainty in the Expert System

Another approach for dealing with uncertainty in the expert system using Dempster-Shafer
Calculus (belief functions) [1.2] was investigated during the course of this project  Dempster-
Shafer Calculus is a method for determining probability ranges in cases where the available
information is partial or incomplete. Unlike the usual probabihstic models which give a single
value, the Dempster-Shafer approach gives a range which bounds the probability The advantage
of using Dempster-Shafer Calculus is its ability to model ignorance. The user might not know the
answer to some of the questions presented by the expert system. This is modeled in the
Dempster-Shafer approach by widening the probability range depending on the level of ignorance.

According to the Dempster-Shafer terminology, the set of all possible structure types © is
called the "frame of discernment”

The set of all possible subsets of the frame of discernment 15 usually referred to as 20

B B - H . T .
since 1t consists of 2 {number of elements in ©) different elements (2 13 in our case).

A basic probability assignment, m, is associated with each element in the set of all possible
subsets The bounds on the probability of any subset 4 of @ are given by

Bel (1) _ PfA) _ Plfd)
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Where Bel ¢4} is the belief of 4

Bel(A) = Y'm(B)
= @

and P! {4) is the plausability of 4

PHA = Em(B) (Note that ¢ is the Null set)
BrA=g (8)

In our prototype implementation we have used conditional Bayesian probabilities to define
the basic probability assignments as described by Yen [2].

The likelihood values obtained previously were converted to conditional probabilities as
follows'

Ale, H)O(H,)

P(He,) =
/ 1 +Ale, |H;)O(H,) ©

The values of P (H; | e,) were then considered as basic probability assignments. Yen {2]
showed that the basic probability assignments obtained from the conditional probabilities could
not be combined directly using Dempster combination rules. He suggests converting the basic
probability assignments, m, into basic certainty assignments, ¢, performing the combination on the
basic certainty assignments, and then converting the results back to basic probability assignments.

The following equation converts the basic probability assignments, m, to basic certainty
assignments, ¢

m(A)

P(4) (10)

To convert the basic certainty assignments, ¢, back to basic probability assignments,

c(A)-P(A)
EC(A}’P(A) an

m(A) =

The following example demonstrates how Dempster-Shafer Calculus can be used to handle
uncertainty in the expert system.
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Example

Suppose that the possible structure types (&;) are:

. Wood-frame buildings {W)
. Light metal structures (LM)
. Tilt-up structures (TU}

Assume that the prior probability for these structure types, based on available statistical
information is P(W) = .5, P(LM) = .2, P(TU) =3, from which one finds that the prior odds
are: O(W)= 5/1-5)=1.0, OLM)= 2/(1-2)= 25, O(TU)= 3/1-3)= 428

Suppose that the evidences (ej) are:

Presence of any wood siding (WS)

Presence of any exposed wood framing (WF)

Presence of metal or asbestos transite siding (MAS)

Whether the height of the roof is more than or equal to 20 ft (H > 207

Suppose also that the logarithm of the likelihoods obtained from the panel of experts was

W LM TU

WS 1.00 -1.0 -.35
WF 10 -10 .60
MAS -35 10 -1.00
H>20 50 -1 .50

(These numbers correspond to the In(A(e/|H:)) terms discussed previously)

During the inspection of the building only the evidences of wood siding (WS) and exposed wood
framing (WF) were identified.

Using the Bavesian Approach

The evidence obtained from the inspection is used to modify the prior probabilities (according to
the Logarithmic Bayes' Theorem) as follows.

Using Equation 5

IN(OW|WSWF)) = 10 +01 + In(1) = 11
In(O(LM|WS,WF))= -10 - 1.0 + In(25) = -3.386
In(O(TU|WS,WF)) = -035+ 06 + In(428) = - 0.5973

From which the following probabilities are obtained using Equation 6

P(W WS, WE)= 75, P(LM| WS, WE)= 033, P(TU| WS, WF)= 355
After normalizing

P(W | WS, WF)= 66, P(LM|WS, WF)=.03, P(TU|WS, WF)= 31
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Using Dempster-Shafer Theorem

According to Dempster-Shafer the likelihood table has to be converted to probabilities PH; | e
(This step is done by using Equation 9 and normalizing the calculated probabilities )

W LM TU
WS 698 080 222
WF 501 080 419
MAS 433 424 143
H>20 387 189 424

The above probabilities could be assumed equal to the basic probability assignments. The basic
certainty assignments for the first two evidences, using Equation 10, are:

W LM TU
WS .55 1377 2918
WF 3581 1429 4990

Combining the above basic certainty assignments using the Dempster combination rule one gets
c(W) =.5395 c(LM) = 0617 c(TU) = 3988

Converting the basic certainty assignments to basic probability assignments using Equation 11,
one gets

m(W) = .67 m(LM) = 03 m(TU) = 0.3

These results are almost identical to those obtained from Bayes' Theorem. The flexibility of
Dempster-Shafer Calculus is more appreciated if we reformulated this example as follows-

Assume the evidence of wood siding (WS) gives a probability of 698 for wood structure{W), and
we don't know how this evidence affects either the tilt-up (TU) or the light metal (LM} structures

m(W | WS) = 698 m(TU or LM | WS) =302

Similarly assume that the appearance of exposed wood framing (WF) reduces the probability of
light metal (LM) to .08, and we don't know how the remaining probabulity is distributed between
nit-up (TU) and wood-frame (WTF) structures.

m(W or TU | WF)= 92 m{(LM | WF) = 08
it WS 1s observed

m(W | WSy = 698 m(TU or LM | WS)= 3



Using Equations 7 and 8

Bel (W) = 698 P! (W) =698
Bel (TU)=0 PI{TU) = 302
Bel (LM) =0 PI{LM) = 302

This means that the probability of wood is .698 and the probability of either TU or LM is between
0 and .302. Assuming that both (WS) and (WF) are observed, one can find the combined basic
probability assignments as follows.

» Convert basic probability assignments to basic certainty assignments using Equation 10

c(W | WS) =698 c(TU or LM | WS) = 302
(W or TU | WF) = .742 o(LM | WF) = .258

+ Apply the Dempster combination rule

| c(Wy=.698  c(TU or LM)= 302
cWorTU)=.742 |c(W)=518 c(TU)=224
e(LM)=.258 c(¢)=.18 c(LM)=.0779

Upon normalizing
(W)= 6318, c(LM)=.095 ¢(TU)=.2731
«  Convert the basic certainty assignments to basic probability assignments using Equation 11

m(Wy= 758, m(LM)=.045 m(TU)= 196

The advantage of the Dempster-Shafer model over the Bayesian approach is the representation of
ignorance. Inthe Dempster-Shafer approach the belief directly committed to a set of hypotheses
is not distributed among its constituents until further evidence is gathered However, in the
Bayesian approach the amount of belief committed to a hypothesis group is always distributed
among its constituents.
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CONCLUSIONS

1. Both rule-based systems and neural network approaches can be used
successfully to design an expert systems for determining the construction
type of buildings.

2. Using Hopfield nets (fuzzy cognitive maps) to devise expert systems is very

efficient since most of the components needed for the expert system are
already included in the neural net.

3. Using Hopfield nets with sigmoid activation functions and appropriate
weights provides probabilistic values identical to those obtained using
Bayesian Probability Theory.

4 Dempster-Shafer Calculus can be a powerful tool to handle uncertainty in
the expert system, since it is more adept at modeling ignorance than the
traditional probabilistic models
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L‘_adc Input File Options

" EQEHAZB PLUS FOR WINDOWS - UNTITLED

QUESTIONS

structure?

is there any evidence that the building is a light metal

EXPLANATIONS

PICTURES
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Light metal buildings are typically one
story structures. Generally, they are
constructed of arched steel moment frames
spanning the short dimensian of the
building. In the long direction, forces

are resisted by diagonal steel rod bracing.
Light metal buildings are usually clad with
lightweight metal or fiberglass siding, ;]
s« vee| often corrugated. Most Hght metal i
buildings have no interiar finishes; their
TR structural skeletons can be seen from the

¥ e interior.

An example screen depicting the query process in the
expert system

TABLE 1. Building Identifiers (after Reference [5])

Building Identifier = General Description

W
51
52
S3
S4
Cl
C2
C3
S5
PCl
PC2
RM
URM

Wood buildings of all types

Steel moment-resisting frames

Braced steel frames

Light metal buildings

Steel frames with cast-in-place concrete shear walls
Concrete moment-resisting frames

Concrete shear wall buildings

Concrete buildings with unreinforced masonry infill walls
Steel-frame buildings with unreinforced masonry infill walls
Tiit-up buildings

Precast concrete-frame buildings

Reinforced masonry

Unreinforced masonry
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