Main Page

From HFA-PEDIA

(Difference between revisions)
Jump to: navigation, search
m
m
(31 intermediate revisions not shown.)
Line 1: Line 1:
-
Possibly the simplest but most vital molecular analyses necessary for conservation with the [http://europeantangsoodoalliance.com/members/friend0jumbo/activity/152719/ http://europeantangsoodoalliance.com/members/friend0jumbo/activity/152719/] Northern Spotted Owl was to define its taxonomic status (Fig. There had been millions of dollars of timber, jobs, and other sources riding on figuring out the limits of its range. Therefore, it was crucial to determine if there have been 1? species or subspecies to be regarded for protection below the U.S. Endangered Species Act. In two research (B) using 3 markers (mtDNA, microsatellites, and RAPDs), we found agreement for three subspecies: Northern (S. o. caurina), California (S. o. occidentalis), and Mexican (S. o. lucida) with evidence for subspecies hybridization where taxa met geographically (Haig et al. 2001, 2004a,b). The situation of intraspecific Northern-California Spotted Owl hybrids difficult conservation action plans for the reason that the ESA only addresses challenges for hybrids in captive conditions (O'Brien and Mayr 1991). This became a bigger concern when we identified proof that Northern Spotted Owls were hybridizing with Barred Owls (Strix varia) that had been swiftly expanding their variety in to the Pacific Northwest. Not recognizing how comprehensive this hybridization might be, we created mtDNA, microsatellite, and AFLP markers to differentiate these taxa for use by law enforcement laboratories (Haig et al. 2004a,b; Funk et al. 2006, 2008a). Even right after the markers were created, there was [https://dx.doi.org/10.3389/fpsyg.2014.00726 title= fpsyg.2014.00726] a legal conundrum as to tips on how to deal with a bird that looked like an ESA-protected Northern Spotted Owl but genetically was a Barred Owl/Northern Spotted Owl hybrid. A little-used clause inside the ESA (section four(e)) provided a potential resolution (Haig and Allendorf 2006). This `similarity of appearance' clause delivers protection for species which can be not listed but closely resemble an ESA-listed species. Understanding the genetic status of Northern Spotted Owls was the following vital step. We began by taking a landscape genetics method (Manel and Holdregger 2013) whereby we could examine the connection in between a random distribution Figure three (A) Northern Spotted Owl female and two older chicks of genes having a random distribution of geographic points (photo by Sheila Whitmore), (B) Distribution of sample web-sites in the across the array of the Northern Spotted Owl (Funk et al. array of the Northern Spotted Owl (from Funk et al. 2010) (Box three). 2008b). We did not come across substantial breaks in gene flow but we did obtain restrictions in gene flow in features like the Cascade and Coast Range mountains also as dry river valleys (Fig. three). A closer investigation into restricted gene flow indicated that Northern Spotted Owls overall had likely undergone a significant recent population bottleneck (Funk et al. 2010). The outcomes have been exactly the same when analyses had been broken down by area (e.g., Cascade Mountains, Olympic peninsula, etc.) and nearby populations. The bottleneck signature was strongest for owls within the Washington Cascades, an region known to become experiencing a important population decline (Forsman et al. 2011). In actual fact, when we compared our bottleneck results [https://dx.doi.org/10.1089/jir.2014.0026 title= jir.2014.0026] for neighborhood populations with population development prices for the 14 demographic study locations monitored more than the previous 20+ years, there was a strong correlation involving a important population bottleneck and important decline in lambda (population growth price) (Funk et al.
+
S) (n = 1, two, 3) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle
 +
S) (n = 1, two, three) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle reported preliminary outcomes around the observation of (5S) (1S, 2S) and (5S) + - (1D) with anomalously significant prices [985]. It's proposed that these anomalies are because of rescatterings [1123,1124]. The big branching fraction from the (4S) (1S) decay observed in 2010 by BaBar could have a similar origin [1125]. The mechanism can be regarded as either as a rescatter??ing on the D D or B B mesons, or as a [http://www.tongji.org/members/shadow2pantry/activity/516070/ http://www.tongji.org/members/shadow2pantry/activity/516070/] contribution of the molecular component towards the quarkonium wave function. ?The model in which Y (4260) is really a D1 (2420) D molecule naturally explains the high probability of the intermediate molecular resonance within the Y (4260) + - J/ transitions [1126,1127] and predicts the Y (4260) X (3872) transitions with high prices [1128]. Such transitions have not too long ago been observed by BES III, with [1107] K + - (2S)2981 Page 74 ofEur. Phys. J. C (2014) 74:[e+ e- X (3872)] 11 . [e+ e- + - J/](4.15)Regardless of striking similarities in between the observations in the charmonium and bottomonium sectors, you'll find also clear variations. In the charmonium sector, every of the Y (3915), (4040), (4160), Y (4260), Y (4360) and Y (4660) decays to only one certain final state with charmonium [ J/, J/, + - J/ or + - (2S)]. Inside the bottomonium sector, there is certainly a single state with anomalous properties, the (5S), and it decays to distinctive channels with comparable prices [ + - (nS), + - h b (m P), + - (1D), (nS)]. There is no common model describing these peculiarities. To explain the affinity from the charmonium-like states to some particular channels, the notion of "hadrocharmonium" was proposed in [1084]. It really is a heavy quarkonium embedded into a cloud of light hadron(s), therefore the fallapart decay is dominant. Hadrocharmonium could also deliver an explanation for [https://dx.doi.org/10.1089/jir.2014.0001 title= jir.2014.0001] the charged charmonium-like states Z (4430)+ , Z (4050)+ and Z (4250)+ . four.three.five Summary Quarkonium spectroscopy enjoys an intensive flood of new benefits. The number of spin-singlet bottomonium states has elevated from 1 to 4 more than the final 2 years, including a far more precise measurement of your b (1S) mass, 11 MeV away in the PDG2012 typical. There is evidence for one of the two nonetheless missing narrow charmonium states anticipated ??within the area amongst the D D and D D thresholds. Observations and detailed studies from the charged bottomoniumlike states Z b (10610) and Z b (10650) and initial benefits on the charged charmonium-like states Z c open a rich phenomenological field to study exotic states near open flavor thresholds. There's also considerable progress as well as a extra clear experimental scenario for the highly excited heavy quarkonium states above open flavor thresholds. Current highlights incorporate confirmation in the Y (4140) state by CMS and D0, observation of your decays (4040, 4160) J/ by Belle, measurement on the energy dependence with the e+ e- + - h c cross section by BES III, observation of your Y (4260) X (3872) by BES III and determination on the Z (4430) spin arity from complete amplitude analysis by Belle.

Revision as of 06:04, 3 January 2018

S) (n = 1, two, 3) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle S) (n = 1, two, three) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle reported preliminary outcomes around the observation of (5S) (1S, 2S) and (5S) + - (1D) with anomalously significant prices [985]. It's proposed that these anomalies are because of rescatterings [1123,1124]. The big branching fraction from the (4S) (1S) decay observed in 2010 by BaBar could have a similar origin [1125]. The mechanism can be regarded as either as a rescatter??ing on the D D or B B mesons, or as a http://www.tongji.org/members/shadow2pantry/activity/516070/ contribution of the molecular component towards the quarkonium wave function. ?The model in which Y (4260) is really a D1 (2420) D molecule naturally explains the high probability of the intermediate molecular resonance within the Y (4260) + - J/ transitions [1126,1127] and predicts the Y (4260) X (3872) transitions with high prices [1128]. Such transitions have not too long ago been observed by BES III, with [1107] K + - (2S)2981 Page 74 ofEur. Phys. J. C (2014) 74:[e+ e- X (3872)] 11 . [e+ e- + - J/](4.15)Regardless of striking similarities in between the observations in the charmonium and bottomonium sectors, you'll find also clear variations. In the charmonium sector, every of the Y (3915), (4040), (4160), Y (4260), Y (4360) and Y (4660) decays to only one certain final state with charmonium [ J/, J/, + - J/ or + - (2S)]. Inside the bottomonium sector, there is certainly a single state with anomalous properties, the (5S), and it decays to distinctive channels with comparable prices [ + - (nS), + - h b (m P), + - (1D), (nS)]. There is no common model describing these peculiarities. To explain the affinity from the charmonium-like states to some particular channels, the notion of "hadrocharmonium" was proposed in [1084]. It really is a heavy quarkonium embedded into a cloud of light hadron(s), therefore the fallapart decay is dominant. Hadrocharmonium could also deliver an explanation for title= jir.2014.0001 the charged charmonium-like states Z (4430)+ , Z (4050)+ and Z (4250)+ . four.three.five Summary Quarkonium spectroscopy enjoys an intensive flood of new benefits. The number of spin-singlet bottomonium states has elevated from 1 to 4 more than the final 2 years, including a far more precise measurement of your b (1S) mass, 11 MeV away in the PDG2012 typical. There is evidence for one of the two nonetheless missing narrow charmonium states anticipated ??within the area amongst the D D and D D thresholds. Observations and detailed studies from the charged bottomoniumlike states Z b (10610) and Z b (10650) and initial benefits on the charged charmonium-like states Z c open a rich phenomenological field to study exotic states near open flavor thresholds. There's also considerable progress as well as a extra clear experimental scenario for the highly excited heavy quarkonium states above open flavor thresholds. Current highlights incorporate confirmation in the Y (4140) state by CMS and D0, observation of your decays (4040, 4160) J/ by Belle, measurement on the energy dependence with the e+ e- + - h c cross section by BES III, observation of your Y (4260) X (3872) by BES III and determination on the Z (4430) spin arity from complete amplitude analysis by Belle.

Personal tools