Main Page

From HFA-PEDIA

(Difference between revisions)
Jump to: navigation, search
m
m
(45 intermediate revisions not shown.)
Line 1: Line 1:
-
Possibly the simplest but most essential molecular analyses required for conservation of your Northern Spotted Owl was to define its taxonomic [http://armor-team.com/activities/p/285512/ http://armor-team.com/activities/p/285512/] status (Fig. three). There were millions of dollars of timber, jobs, and also other sources riding on determining the limits of its range. Thus, it was crucial to identify if there were 1? species or subspecies to be regarded as for protection beneath the U.S. Endangered Species Act. In two research (B) using three markers (mtDNA, microsatellites, and RAPDs), we located agreement for 3 subspecies: Northern (S. o. caurina), California (S. o. occidentalis), and Mexican (S. o. lucida) with evidence for subspecies hybridization where taxa met geographically (Haig et al. 2001, 2004a,b). The problem of intraspecific Northern-California Spotted Owl hybrids difficult conservation action plans mainly because the ESA only addresses difficulties for hybrids in captive scenarios (O'Brien and Mayr 1991). This became a larger concern when we identified proof that Northern Spotted Owls have been hybridizing with Barred Owls (Strix varia) that were speedily expanding their variety in to the Pacific Northwest. Not figuring out how comprehensive this hybridization may be, we developed mtDNA, microsatellite, and AFLP markers to differentiate these taxa for use by law enforcement laboratories (Haig et al. 2004a,b; Funk et al. 2006, 2008a). Even immediately after the markers were developed, there was [https://dx.doi.org/10.3389/fpsyg.2014.00726 title= fpsyg.2014.00726] a legal conundrum as to ways to handle a bird that looked like an ESA-protected Northern Spotted Owl but genetically was a Barred Owl/Northern Spotted Owl hybrid. A little-used clause in the ESA (section four(e)) offered a prospective solution (Haig and Allendorf 2006). This `similarity of appearance' clause delivers protection for species that happen to be not listed but closely resemble an ESA-listed species. Understanding the genetic status of Northern Spotted Owls was the following critical step. We began by taking a landscape genetics approach (Manel and Holdregger 2013) whereby we could examine the partnership between a random distribution Figure 3 (A) Northern Spotted Owl female and two older chicks of genes with a random distribution of geographic points (photo by Sheila Whitmore), (B) Distribution of sample web sites inside the across the range of the Northern Spotted Owl (Funk et al. array of the Northern Spotted Owl (from Funk et al. 2010) (Box three). 2008b). We didn't find important breaks in gene flow but we did locate restrictions in gene flow in features like the Cascade and Coast Range mountains also as dry river valleys (Fig. three). A closer investigation into restricted gene flow indicated that Northern Spotted Owls all round had probably undergone a substantial recent population bottleneck (Funk et al. 2010). The outcomes have been precisely the same when analyses were broken down by region (e.g., Cascade Mountains, Olympic peninsula, etc.) and local populations. The bottleneck signature was strongest for owls within the Washington Cascades, an location recognized to be experiencing a significant population decline (Forsman et al. 2011). In fact, when we compared our bottleneck results [https://dx.doi.org/10.1089/jir.2014.0026 title= jir.2014.0026] for local populations with population development prices for the 14 demographic study regions monitored over the previous 20+ years, there was a robust correlation involving a significant population bottleneck and significant decline in lambda (population development rate) (Funk et al.
+
S) (n = 1, two, 3) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle
 +
S) (n = 1, two, three) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle reported preliminary outcomes around the observation of (5S) (1S, 2S) and (5S) + - (1D) with anomalously significant prices [985]. It's proposed that these anomalies are because of rescatterings [1123,1124]. The big branching fraction from the (4S) (1S) decay observed in 2010 by BaBar could have a similar origin [1125]. The mechanism can be regarded as either as a rescatter??ing on the D D or B B mesons, or as a [http://www.tongji.org/members/shadow2pantry/activity/516070/ http://www.tongji.org/members/shadow2pantry/activity/516070/] contribution of the molecular component towards the quarkonium wave function. ?The model in which Y (4260) is really a D1 (2420) D molecule naturally explains the high probability of the intermediate molecular resonance within the Y (4260) + - J/ transitions [1126,1127] and predicts the Y (4260) X (3872) transitions with high prices [1128]. Such transitions have not too long ago been observed by BES III, with [1107] K + - (2S)2981 Page 74 ofEur. Phys. J. C (2014) 74:[e+ e- X (3872)] 11 . [e+ e- + - J/](4.15)Regardless of striking similarities in between the observations in the charmonium and bottomonium sectors, you'll find also clear variations. In the charmonium sector, every of the Y (3915), (4040), (4160), Y (4260), Y (4360) and Y (4660) decays to only one certain final state with charmonium [ J/, J/, + - J/ or + - (2S)]. Inside the bottomonium sector, there is certainly a single state with anomalous properties, the (5S), and it decays to distinctive channels with comparable prices [ + - (nS), + - h b (m P), + - (1D), (nS)]. There is no common model describing these peculiarities. To explain the affinity from the charmonium-like states to some particular channels, the notion of "hadrocharmonium" was proposed in [1084]. It really is a heavy quarkonium embedded into a cloud of light hadron(s), therefore the fallapart decay is dominant. Hadrocharmonium could also deliver an explanation for [https://dx.doi.org/10.1089/jir.2014.0001 title= jir.2014.0001] the charged charmonium-like states Z (4430)+ , Z (4050)+ and Z (4250)+ . four.three.five Summary Quarkonium spectroscopy enjoys an intensive flood of new benefits. The number of spin-singlet bottomonium states has elevated from 1 to 4 more than the final 2 years, including a far more precise measurement of your b (1S) mass, 11 MeV away in the PDG2012 typical. There is evidence for one of the two nonetheless missing narrow charmonium states anticipated ??within the area amongst the D D and D D thresholds. Observations and detailed studies from the charged bottomoniumlike states Z b (10610) and Z b (10650) and initial benefits on the charged charmonium-like states Z c open a rich phenomenological field to study exotic states near open flavor thresholds. There's also considerable progress as well as a extra clear experimental scenario for the highly excited heavy quarkonium states above open flavor thresholds. Current highlights incorporate confirmation in the Y (4140) state by CMS and D0, observation of your decays (4040, 4160) J/ by Belle, measurement on the energy dependence with the e+ e- + - h c cross section by BES III, observation of your Y (4260) X (3872) by BES III and determination on the Z (4430) spin arity from complete amplitude analysis by Belle.

Revision as of 06:04, 3 January 2018

S) (n = 1, two, 3) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle S) (n = 1, two, three) transitions with partial widths of 300 - 400 keV [1116]. Recently Belle reported preliminary outcomes around the observation of (5S) (1S, 2S) and (5S) + - (1D) with anomalously significant prices [985]. It's proposed that these anomalies are because of rescatterings [1123,1124]. The big branching fraction from the (4S) (1S) decay observed in 2010 by BaBar could have a similar origin [1125]. The mechanism can be regarded as either as a rescatter??ing on the D D or B B mesons, or as a http://www.tongji.org/members/shadow2pantry/activity/516070/ contribution of the molecular component towards the quarkonium wave function. ?The model in which Y (4260) is really a D1 (2420) D molecule naturally explains the high probability of the intermediate molecular resonance within the Y (4260) + - J/ transitions [1126,1127] and predicts the Y (4260) X (3872) transitions with high prices [1128]. Such transitions have not too long ago been observed by BES III, with [1107] K + - (2S)2981 Page 74 ofEur. Phys. J. C (2014) 74:[e+ e- X (3872)] 11 . [e+ e- + - J/](4.15)Regardless of striking similarities in between the observations in the charmonium and bottomonium sectors, you'll find also clear variations. In the charmonium sector, every of the Y (3915), (4040), (4160), Y (4260), Y (4360) and Y (4660) decays to only one certain final state with charmonium [ J/, J/, + - J/ or + - (2S)]. Inside the bottomonium sector, there is certainly a single state with anomalous properties, the (5S), and it decays to distinctive channels with comparable prices [ + - (nS), + - h b (m P), + - (1D), (nS)]. There is no common model describing these peculiarities. To explain the affinity from the charmonium-like states to some particular channels, the notion of "hadrocharmonium" was proposed in [1084]. It really is a heavy quarkonium embedded into a cloud of light hadron(s), therefore the fallapart decay is dominant. Hadrocharmonium could also deliver an explanation for title= jir.2014.0001 the charged charmonium-like states Z (4430)+ , Z (4050)+ and Z (4250)+ . four.three.five Summary Quarkonium spectroscopy enjoys an intensive flood of new benefits. The number of spin-singlet bottomonium states has elevated from 1 to 4 more than the final 2 years, including a far more precise measurement of your b (1S) mass, 11 MeV away in the PDG2012 typical. There is evidence for one of the two nonetheless missing narrow charmonium states anticipated ??within the area amongst the D D and D D thresholds. Observations and detailed studies from the charged bottomoniumlike states Z b (10610) and Z b (10650) and initial benefits on the charged charmonium-like states Z c open a rich phenomenological field to study exotic states near open flavor thresholds. There's also considerable progress as well as a extra clear experimental scenario for the highly excited heavy quarkonium states above open flavor thresholds. Current highlights incorporate confirmation in the Y (4140) state by CMS and D0, observation of your decays (4040, 4160) J/ by Belle, measurement on the energy dependence with the e+ e- + - h c cross section by BES III, observation of your Y (4260) X (3872) by BES III and determination on the Z (4430) spin arity from complete amplitude analysis by Belle.

Personal tools