12107

VAW Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss Federal Institute of Technology, Zurich

Coping study on

DISASTER RESILIENT INFRASTRUCTURE

Cornmissioned by the Secretariat for the International Decade for Natural Disaster Reduction for the IDNDR Programme Forum 1999 "Partnerships for a safer world in the 21st century"

LINHTED NIATIONIC

PREFACE

In December 1998 an agreement was signed to provide support for the organization of IDNDR Program Forum to be held in July 1999 and its preparatory process through undertaking a coping study on the theme *Disaster Resilient Infrastructure* by Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) of ETH Zurich within the project "Coping Studies on Research Needs for Future Disaster Reduction". These coping studies are implemented and coordinated by the Graduate Institute of International Studies, Geneva, the Programme for the Study of International Organizations(HEI-PSIO).

VAW is doing research only in some fields of natural hazards **i.e.** floods, debris flow, impulse waves and ice avalanches. Therefore, it was necessary to find partners to contribute to this report. Fortunately it was possible to find experts in each field of natura! hazard that were willing to write a chapter of this report. I take this opportunity to thank all authors for their valuable combutions. **A** detailed list of all authors **is** provided.

To contribute to the coping study was a challenge. It is not easy to summarize the essentials on such limited space. And if the report gets too voluminous it would be too difficult to read. 1 hope that the right equilibrium was found and this report introduces the reader on the main problems, **risks**, but also research needs and necessary activities to be taken in relation to natural hazards.

I want to thank Dr. Warner, Director of PIIO, the project coordinator for the excellent cooperation and Dr. Hager for having coordinated as a project head.

Prof. Dr. H.-E. Minor

Contributing Authors

Ammann, Walter J.	Dr., Head, Swiss Federal Institute for Snow and Avalanche Research (SLF), Flüelastrasse 11,7260Davos Dorf
Boll, Albert	WSL, Abtl. Wasser-, Erd- und Felsbewegungen, 8903 Birmensdorf
Bonnard, Christophe	Soil Mechanics Laboratory, Swiss Federal Institute of Technology (EPFL,), 1015 Lausanne
Conedera, Marco	FNP Sottostazione Sud delle Alpi, Via Belsoggiorno 22, 6504 Bellinzona
Descoeudres, François	Prof. Dr., Rock Mechanics Laboratory, Swiss Federal Institute of Technology (EPFL), 1015Lausanne
Föhn, Paul M.E.	Dr., Swiss Federal Institute for Snow and Avalanche Research (SLF), Flüelastrasse 11,7260 Davos Dorf
Funk, Martin	Dr., Laboratory for Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology (ETH), 8092 Zürich
Gerber, Werner	WSL, Abtl. Wasser-, Erd- und Felsbewegungen, 8903 Birmensdorf
Hager, Willi H.	Prof. D _I ., Laboratory for Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology (ETH), 8092 Ziirich
Lnbiouse, Vincent	Dr., MER, Rock Mechanics Laboratory, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne
Margreth, Stefan	Swiss Federal Institute for Snow and Avalanche Research (SLF), Flüelastrasse 11,7260 Davos Dorf
Minor, Hans-Erwin	Prof. Di., Laboratory for Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology (ETH), 8092 Ziirich
Montani-Stoffel, Sara	Dr., Rock Mechanics Laboratory, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne
Studer, Jost A.	Dr., Studer Engineering, Thujastrasse 4,8038 Zürich
Vischer, Daniel L.	Prof.em. Dr., c/o Laboratory for Hydraulics, Hydrology and Glaciology (VAW), Swiss Federai Institute of Technology (ETH), 8092 Zürich
Vulliet, Laiirent	Prof. Dr., Soil Mechanics Laboratory, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne
Zimmerli, Bruno	Dr., Fachhochschule FHZ, Hochschule für Technik und Architektur, Technikumstr. 21, 6048 Horw

CONTENTS

				page	
GEN	ERA	LREM	ARK AND SUMMARY	5	
1. W	/IND	LOAD	S	9	
1.	.1	Introdu	ction	9	
1.	.2	Static a	and dynamic wind loads	9	
1.	.3	Codes		10	
1.	.4	Possibi	lities to prevent disasters	10	
		1.4.3 1.4.4 1.4.5 1.4.6		10 11 11 13 13 13 13 13 14	
R	efere	ence		15	
2. S	NOV	WAVAI	LANCHES	17	
2	.1	Introdu	action	17	
2	.2	Avalan	the hazard and damage scenarios	18	
2	2.3 Avalanche protection measures				
		2.3.2 2.3.3 2.3.4	General overview Avalanche forecasting Avalanche hazard mapping Technical measures Mountain forest	19 19 22 23 25	
2	2.4	Avalar	nche risk and management	25	
2	2.5	Resear	rch needs	25	
		2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Physics and mechanics of snow Avalanche forecasting Avalanche hazard mapping Technical measures Risk management	25 25 26 26 26	
F	Refer	ences		27	
3. I	CE A	VALA	NCHES	29	
3	3.1	Introd	uction	29	
3	3.2	Histor	ical ice avalanches	29	
3	3.3	Startir	ng zones and run-out distances of ice avalanches	31	
3	3.4	Ice av	alanche hazard mapping	33	
3	3.5	Predic	tion of the break-off time	33	
3	3.6	Outloo	ok	35	
F	Refe	rences		35	

4.	ROCK	KFALLS	5	37
	4.1	Introdu	Ction	37
	4.2	Rockfal	l resilient infrastructure	38
		4.2.1 4.2.2	Stabilisation methods Protecting measures	38 38
	4.3	Wire ne	et rockfall barriers	39
			Introduction Full-scale testing of rockfall barriers Forces and design criteria Summary and outlook	39 40 41 42
	4.4	Rock s	heds	43
		4.4.3 4.4.4 4.4.5	Introduction Description of problem Test device Quantitative evaluation of forces Inclined impacts Conclusions	43 43 43 45 46 46
	Refere	ences		46
5.	LANI	OSLIDE	S	49
	5.1	Introdu	action	49
	5.2	Main f	actors for landslide resilient infrastructure	49
	5.3	Slide r	esilient infrastructure	50
		5.3.2	Modification of slope geometry Retaining structures Internal slope reinforcement Drainage	50 51 51 52
	5.4	Debris	flow resilient infrastructure	53
		5.4.1 5.4.2 5.4.3 5.4.4	Escalonated river protection scheme Lateral protection dams and dikes Emergency spillway structure Structure separating bed load from water (Japanese trap)	53 54 54 54
	5.5	Guide	lines to improve the safety of disaster resilient infrastructure	54
	Refer	ences		55
6.	IMPI	JLSE W	AVES	57
•	6.1	Introd		57
	6.2		es of impulse waves	58
	6.3		se wave runup and overtopping	60
	6.4	Conse	quences for infrastructure	61
		6.4.1 6.4.2	Reservoir overtopping Wave runup	61 61
	6.5	Reserv	voir drawdown	62
	6.6	Recon	nmendations	63
	Refe	rence		63

7	гарл		65					
		HQUAKES						
	7.1	Characteristics and damages	65					
	7.2	Importance of infrastructure for disaster response and rehabilitation	66					
	7.3	Vulnerability of infrastructure	66					
		 7.3.1 characteristics of infrastructural systems 7.3.2 Vulnerability of infrastructural systems 7.3.3 Vulnerability of infrastructural components 	67 67 68					
	7.4	Risk mitigation measures	68					
8.	FORE	EST FIRES	71					
	8.1	Introduction	71					
	8.2	Forest fire data bases	71					
	8.3	Fire history						
	8.4	Effects of forest fires	72					
	8.5	Fire risk prediction	73					
	8.6	Fire behaviour modelling	73					
	8.7	Fire management	74					
	8.8	8 Conclusions						
	Refer	ences	75					
9.	FLOO	DDPROTECTION AND INFRASTRUCTURAL DEFENSE	77					
	9.1	Dams and nuclear power plants	77					
	9.2	Pipeline-bound supply and disposal plants, transportation schemes	78					
	9.3	Buildings	81					

GENERAL REMARK AND SUMMARY

H.-E. Minor

Economic losses attributable to natural hazards rise steadily as the figures of Munich Reensurance demonstrate. And each year a notable number of persons are killed or displaced at least for some time from their home areas. There are several reasons for the increase of impact by natural hazards:

- *Extension of settlements* including the corresponding infrastructure and productive plants is continuing. Not only the growing number of people **is** a reason but also the steady improvement of the built environment. Globalization and the pronounced division of labor in world economy will add even more in the future.
- There is and will be *more infrastructure* in the future that can be damaged; its construction cost is steadily increasing.
- Human activities with its settlements and infrastructure spread into endangered areas sometimes brcause no other space is available. This is convenient just on a short sight. *Construction costs* at flood plains for example are lower than on hilly ground. Since floods occur not every year, larger floods more than five years ago are normaly forgotten.
- Sports-activities and *tourism* also push into more extreme areas and add to the necessary infrastructure.

All these structures are exposed to a high **risk** but at the same time they are expected to withstand disastrous impacts during natural hazards. This is not always possible. Man must realize that *100% safety does not exist*, especially not if structures are exposed consciously to natural hazard. They cannot be made safe against all possible impacts of natural hazards. In some cases it is simply not possible because of lack of technical means while it would be much too expensive in other situations.

Another approach is to define *hazard zones*. In the most critical zones with a high hazard potential construction could be prohibited, in the second zone with a moderate potential hazard, prescriptions should be made to armour structure against the natural hazard, and in a third zone owners have to be informed about existing hazard. Additionally it is essential to build up a *second line of defence* in case the first defense line fails. Needless to state that a warning system as well as rescue measures have to be installed. The warning system is then effective provided real-time-prediction is possible and the *rescue measures* are effective if extensive training has been carried out for specific hazards.

The various natural hazards have different character because they are governed by different physical processes. Accordingly, the methods of *hazard intervention* also differ. Table 0.1 attempts to demonstrate these differences and at the same time intends to show the possibilities of intervention. Three zones have been distinguished:

- Origin or source of hazard,
- Propagation or spreading area, and
- Zone of impact.

For extreme natural hazards, structures are essentially not able to resist, while other can be dealt with by a correct design. For many natural hazards it is nearly impossible to intervene at the source, for some, however, this approach is feasible such as landslides. Then, of course, this should be the first line of activity. As can be seen from Table 0.1 intervening in the propagation/spreading area is effective for many natural hazards.

In addition to the possible actions to be taken as listed in Table 0.1, consequent *regional planning* with definition of hazard zones would reduce considerably the impact of natural hazards to infrastructure *Hazard zoning* should be defined not only for one natural hazard

scenario, but all natural hazards of a site should be investigated at the same time define the combined **risk** of endangered areas.

In this context it must be mentioned that different hazards are treated separately by the corresponding specialist. However, two or more natural hazards may *interact* and the experts have to come up with a common definition of solution. Future research has to take this aspect also into account.

The different chapters of this report aim to present the specific research needs in more detail or define the necessary activities *to* be carried out to make infrastructure more disaster resilient, as regarded by the authors.

Table 1 Possibilities of hazard intervention
--

Hazard Lone	① wind	© snow avalanches	③ ice avalanches	④ rockfall	⑤a landslides	⑤ b debris flow	© impulse wave:	Ø earthquake	If the second	9 floods
Origin or source	none	supporting structures, artificial release of avalanches, silviculture, reforestation	none	limited	slope geometry, retaining structures, slope reinforce- ment, drainage. Large, steep slopes cannot be stabilized	check dams in torrents and scour measures, as for landslide	stabilize slides, draw down reservoir, control slide velocity	none		none
Propagation spreading arca	little, consider vortex shedding	deviation dams, retaining dams, retarding structures	structures to divert avalanche away from vulnearable structures	various structures to hold brick rockfall	none	protection dams to keep debris flow from vaiunerable structures Japanese trap	drawdown of reservoir	none		Retention basins, flood plain diversion structures, reduce sediment and drift wood supply
Zone of impact	apply state of the art design	shed structures	very limited	rock sheds	structures arc essentially not able to resist thrust by lands- lide	see landslides	vcry limited	adequate design of structures, but also of infra- structure		increase river capacity, flood dykes, more space for river, increase erosion resistance