DISCLAIMER

This document has been reviewed by the Federal Emergency Management Agency and approved for publication. The contents do not necessarily reflect the views and policies of the Federal Emergency Management Agency.

Landslide Loss Reduction:

A Guide for State and Local Government Planning

by:
Robert L. Wold, Jr.
Colorado Division of Disaster Emergency Services
and
Candace L. Jochim
Colorado Geological Survey

Contents

FOREWORDvi	Lahar14
ACKNOWLEDGMENTSvii	Subaqueous Landslide15
Advisory Committeevii	Interrelationship of Landsliding With
CHAPTER 1—Introduction1	Other Natural Hazards (The Multiple
Purpose of this Guidebook3	Hazard Concept)15
CHAPTER 2—Landslide Losses and	Landsliding and Dam Safety15
the Benefits of Mitigation4	Landsliding and Flooding17
The Landslide Hazard4	Landsliding and Seismic Activity18
Economic and Social Impacts of	Landsliding and Volcanic Activity19
Landsliding4	CHAPTER 4—Hazard Identification,
Costs of Landsliding4	Assessment, and Mapping20
Impacts and Consequences of	Hazard Analysis20
Landsliding4	Map Analysis20
Long-Term Benefits of Mitigation5	Analysis of Aerial Photography
The Cincinnati, Ohio Study6	and Imagery20
The Benefits of Mitigation in Japan6	Analysis of Acoustic Imagery
Planning as a Means of Loss Reduction6	and Profiles20
Local Government Roles7	Field Reconnaissance20
CHAPTER 3—Causes and Types of	Aerial Reconnaissance20
Landslides9	Drilling20
What Is a Landslide?9	Geophysical Studies21
Why Do Landslides Occur?9	Computerized Landslide Terrain
Human Activities9	Analysis21
Natural Factors9	Instrumentation21
Climate9	Anticipating the Landslide Hazard21
Erosion10	Translation of Technical Information
Weathering10	to Users21
Earthquakes11	Regional Mapping22
Rapid Sedimentation11	Community-Level Mapping22
Wind-Generated Waves11	Site-Specific Mapping22
Tidal or River Drawdown11	Types of Maps22
Types of Landslides11	Landslide Inventories22
Falls11	Landslide Susceptibility Maps23
Topple11	Landslide Hazard Maps25
Slides11	CHAPTER 5—Transferring and
Rotational Slide12	Encouraging the Use of Information26
Translational Slide12	Information Transfer26
Block Slide13	Users of Landslide Hazard
Lateral Spreads13	Information27
Flows13	Developing an Information Base:
Creep13	Sources of Landslide Hazard
Debris Flow13	Information
Debris Avalanche13	CHAPTER 6—Landslide Loss-Reduc-
Earthflow14	tionTechniques
Mudflow14	Preventing or Minimizing Exposure

Contents Continued

to Landslides30	Local Needs39
Land-Use Regulations30	Step 6 - Formulation of Goals and
Reducing the Occurrence of Landslides	Objectives40
and Managing Landslide Events30	Local Landslide Hazard
Building and Grading Codes30	Mitigation40
Emergency Management31	Development of Mitigation
Controlling Landslide-Prone Slopes	Projects40
and Protecting Existing Structures31	Step 7 - Establishment of a
Precautions Concerning Reliance	Permanent State Hazard
on Physical Methods32	Mitigation Organization41
Design Considerations and Physical	Step 8 - Review and Revision43
Mitigation Methods33	CHAPTER 8—Review and Revision of
CHAPTER 7—Plan Preparation35	the Plan and the Planning Process44
Determining the Need for a State Plan35	Inventory of Landslide Costs44
Federal Disaster Relief and	Evaluation of Mitigation Projects and
Emergency Assistance Act	Techniques44
(Section 409)35	Examples of Innovative Mitigation
The Planning Team36	Approaches45
The Planning Process37	Analyses of Local Mitigation Programs45
Step 1 - Hazard Analysis37	CHAPTER 9—Approaches for Over-
Step 2 - Identification of Impacted	coming Anticipated Problems46
Sites37	Organizational Problems46
Step 3 - Technical Information	Management Problems46
Transfer38	Financial Problems46
Step 4 - Capability Assessment38	Coordination Problems47
Step 5 - Determination of Unmet	REFERENCES CITED48

Figures

			TO 1 1 0 0 11 11 1 0	4
la.	Map showing relative potential of		Debris fan formed by debris flows	
	different parts of the conterminous		Earthflow	15
	United States to landsliding1	16b.	Roan Creek Earthflow, DeBeque,	
1b.	Potential landslide hazard in		Colorado	15
	Maine2	17 .	Damage from Slide Mountain	
2.	Major damage from debris flow,		landslide, Nevada	16
	Farmington, Utah5	18.	Jackson Springs landslide,	
3.	"Bucket brigade," Farmington, Utah5		Franklin D.Roosevelt Lake,	
4.	Landslide losses in Japan 1938–19816		Washington state	17
5.	The relationship of people, landslides,	19. ´	Aerial view of the Thistle landslide,	
	and disasters7		Utah	18
6.	Aerial view of the Savage Island	20.	Landslide inventory map, Durango,	
	landslide, Washington state10		Colorado	23
7.	Ruins of home destroyed in Kanawha	21.	Landslide inventory map, La Honda,	
	City, West Virginia10		California	24
8a.	Rockfall11	22.	Landslide susceptibility map, King	
8b.	Rockfall on U.S. Highway 6,		County, Washington	24
	Colorado11	23.	Earthquake landslide hazard map,	
9a.	Topple12		San Mateo County, California	25
9b.	Topple, western Colorado12	24.	Hazardous area warning sign	
	Rotational slide12	25.	Warning system schematic	32
	Rotational slide, Golden, Colorado13	26.	Rudd Creek debris basin, Farmington,	
11.	Translational slide		Utah	32
12.	Block slide13	27.	Retaining wall, Interstate 70,	
	Lateral spread14		Colorado	33
	Lateral spread, Cortez, Colorado14	28.	Executive Order establishing	
14a	Creep14		Colorado Natural Hazards Mitigation	
	Creep, Mt. Vernon Canyon, Colorado14		Council	42
	0.00p,		**	

Tables

1.	Estimates of minimum landslide		information	26.
	damage in the United States,	4.	Potential users of landslide hazard	
	1973-19832		information	27
2.	Techniques for reducing landslide	5.	Examples of producers and providers	
	hazards8		of landslide hazard information	29
3.	Examples of resources available for	6.	Physical mitigation methods	33
	obtaining/transferring landslide	7.	Capability assessment checklist	38

Foreword

There is a need for a comprehensive program to reduce landslide losses in the United States that marshals the capability of all levels of government and the private sector. Without such a program, the heavy and widespread losses to the nation and to individuals from landslides will increase greatly. Successful and cost-effective landslide loss-reduction actions can and should be taken in the many jurisdictions facing landslide problems. The responsibility for dealing with landslides principally falls upon state and local governments and the private sector. The federal government can provide research, technical guidance, and limited funding assistance, but to meet their responsibility for maintaining the public's health, safety and welfare, state and local governments must prevent and reduce landslide losses through hazard mapping, land-use management, and building and grading controls. In partnership with public interest groups and governments, the private sector must also increase its efforts to reduce landslide hazards.

Dramatic landslide loss reduction can be achieved. The effective use of landslide building codes and grading ordinances by a few state and local governments in the nation clearly demonstrates that successful programs can be put into place with reasonable costs. Numerous examples of responsible landslide hazard planning and mitigation by private developers exist but are usually overshadowed by improper development that ignores the hazard.

Transfer of proven governmental and private sector landslide hazard mitigation techniques to other jurisdictions throughout the nation is one of the most effective ways of helping to reduce future landslide losses. This guide, prepared by the State of Colorado for the Federal Emergency Management Agency, builds upon the impressive efforts taken by Colorado state and local governments in planning for and mitigating landslide losses. The Federal Emergency Management Agency hopes that this guide and the accompanying plan for landslide hazard mitigation will stimulate and assist other state and local governments, private interests, and citizens throughout the nation to reduce the landslide threat.

> Arthur J. Zeizel Project Officer Federal Emergency Management Agency

Acknowledgments

This project was funded in part by the Federal Emergency Management Agency (FEMA), the Colorado Division of Disaster Emergency Services (DODES), the Colorado Geological Survey (CGS), and the U.S. Geological Survey (Grant No. 14–08–0001–A0420).

The document was written and prepared by Robert L. Wold, Jr. (DODES) and Candace L. Jochim (CGS). Staff contributors included: William P. Rogers, Irwin M. Glassman, and John O. Truby. Additional contributors included: **David B. Prior** of the Coastal Studies Institute of Louisiana State University and **William J. Kockelman** of the U.S. Geological Survey. Project management was provided by **Arthur Zeizel** (FEMA) and **Irwin Glassman** (DODES).

Other essential project personnel included: Cheryl Brchan (drafting and layout), Nora Rimando (word processing), and David Butler (editing).

Advisory Committee

John Beaulieu, Deputy State Geologist, Oregon John P. Byrne, Director, Disaster Emergency Services, Colorado

William J. Kockelman, Planner, U.S. Geological Survey, California

Peter Lessing, Environmental Geologist, West Virginia Geological Survey George Mader, President, William Spangle and
Associates, California

Dr. Robert L. Schuster, U.S. Geological Survey, Colorado

Dr. James E. Slosson, Chief Engineering Geologist, Slosson and Associates, California

Darrell Waller, State Coordinator, Bureau of Disaster Services, Idaho